Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Optimization problems that involve topology opti- mization in scenarios with large scale outages, such as post- disaster restoration or public safety power shutoff planning, are very challenging to solve. Using simple power flow representa- tions such as DC power flow or network flow models results in low quality solutions which requires significantly higher- than-predicted load shed to become AC feasible. Recent work has shown that formulations based on the Second Order Cone (SOC) power flow formulation find very high quality solutions with low load shed, but the computational burden of these formulations remains a significant challenge. With the aim of reducing computational time while maintaining high solution quality, this work explores formulations which replace the conic constraints with a small number of linear cuts. The goal of this approach is not to find an exact power flow solution, but rather to identify good binary decisions, where the power flow can be resolved after the binary variables are fixed. We find that a simple reformulation of the Second Order Cone Optimal Power Shutoff problem can greatly improve the solution speed, but that a full linearization of the SOC voltage cone equation results in an overestimation of the amount of power that can be delivered to loads.more » « lessFree, publicly-accessible full text available June 30, 2026
-
Free, publicly-accessible full text available June 16, 2026
-
Quantifying Metrics for Wildfire Ignition Risk from Geographic Data in Power Shutoff Decision-MakingFaults on power lines and other electric equipment are known to cause wildfire ignitions. To mitigate the threat of wildfire ignitions from electric power infrastructure, many utilities preemptively de-energize power lines, which may result in power shutoffs. Data regarding wildfire ignition risks are key inputs for effective planning of power line de-energizations. However, there are multiple ways to formulate risk metrics that spatially aggregate wildfire risk map data, and there are different ways of leveraging this data to make decisions. The key contribution of this paper is to define and compare the results of employing six metrics for quantifying the wildfire ignition risks of power lines from risk maps, considering both threshold- and optimization-based methods for planning power line de-energizations. The numeric results use the California Test System (CATS), a large-scale synthetic grid model with power line corridors accurately representing California infrastructure, in combination with real Wildland Fire Potential Index data for a full year. This is the first application of optimal power shutoff planning on such a large and realistic test case. Our results show that the choice of risk metric significantly impacts the lines that are de-energized and the resulting load shed. We find that the optimization-based method results in significantly less load shed than the threshold-based method while achieving the same risk reduction.more » « lessFree, publicly-accessible full text available January 7, 2026
-
The Optimal Power Shutoff (OPS) problem is an optimization problem that makes power line de-energization decisions in order to reduce the risk of igniting a wildfire, while minimizing the load shed of customers. This problem, with DC linear power flow equations, has been used in many studies in recent years. However, using linear approximations for power flow when making decisions on the network topology is known to cause challenges with AC feasibility of the resulting network, as studied in the related contexts of optimal transmission switching or grid restoration planning. This paper explores the accuracy of the DC OPS formulation and the ability to recover an AC-feasible power flow solution after de-energization decisions are made. We also extend the OPS problem to include variants with the AC, Second-Order-Cone, and Network-Flow power flow equations, and compare them to the DC approximation with respect to solution quality and time. The results highlight that the DC approximation overestimates the amount of load that can be served, leading to poor de-energization decisions. The AC and SOC-based formulations are better, but prohibitively slow to solve for even modestly sized networks thus demonstrating the need for new solution methods with better trade-offs between computational time and solution quality.more » « less
-
The frequency of wildfire disasters has surged fivefold in the past 50 years due to climate change. Preemptive de-energization is a potent strategy to mitigate wildfire risks but substantially impacts customers. We propose a multistage stochastic programming model for proactive de-energization planning, aiming to minimize economic loss while accomplishing a fair load delivery. We model wildfire disruptions as stochastic disruptions with varying timing and intensity, introduce a cutting-plane decomposition algorithm, and test our approach on the RTS-GLMC test case. Our model consistently offers a robust and fair de-energization plan that mitigates wildfire damage costs and minimizes load-shedding losses, particularly when pre-disruption restoration is considered.more » « less
-
Garcia-Perez, Manuel (Ed.)Renewable natural gas (RNG) often generates usable energy from waste products, reduces methane emissions, and creates new revenue streams. However, not all RNG projects are financially or technically feasible. We assessed the total RNG potential of currently available local waste feedstocks in the state of Minnesota and analyzed the financial and technical limitations for project development. We found that under ideal production conditions the RNG potential from municipal solid waste, dairy and hog farm manure, and municipal wastewater solids in the state could replace approximately 7.5% of current Minnesota natural gas use. We find that technical and financial factors such as project size, financing, and distance to an existing pipeline further reduce the number of feasible RNG project sites in Minnesota. Virtual pipelines – trucking RNG short distances to pipeline injection stations – improved the modeled profitability of 124 out of 175 projects (71%) by decreasing transmission costs. No projects are financially feasible without state or federal renewable fuel credit programs because direct sale of RNG alone does not cover project costs. Dairy manure projects have the lowest levelized cost of energy, the highest total revenue, and the shortest payback period compared to municipal solid waste landfill and wastewater treatment plant projects of similar size. This difference is because manure anaerobic digestion projects are eligible for larger credits under renewable fuel credit programs than municipal solid waste landfills and wastewater treatment plants, but this credit system limits end-use of the RNG to vehicle fuel. Our contribution helps provide an outline for the magnitude of current natural gas use in Minnesota replaceable via RNG projects.more » « less
-
Electric power infrastructure has ignited several of the most destructive wildfires in recent history. Preemptive power shutoffs are an effective tool to mitigate the risk of ignitions from power lines, but at the same time can cause widespread power outages. This work proposes a mathematical optimization problem to help utilities decide where and when to implement these shutoffs, as well as how to most efficiently restore power once the wildfire risk is lower. Specifically, our model co-optimizes the power shutoff (considering both wildfire risk reduction and power outages) as well as the post-event restoration efforts given constraints related to inspection and energization of lines, and is implemented as a rolling horizon optimization problem that is resolved whenever new forecasts of load and wildfire risk become available. We demonstrate our method on the IEEE RTS-GMLC test case using real wildfire risk data and forecasts from US Geological Survey, and investigate the sensitivity of the results to the forecast quality, decision horizon and system restoration budget. The software implementation is available in the open source software package PowerModels Wildfire.jl.more » « less
An official website of the United States government
